Meme lunes, 30 de septiembre de 2013



UNIDAD II
INFORMACIÓN GENÉTICA
CONTENIDO 5: Bases Químicas de la Herencia.
Propósito:


  • Identificar los antecedentes históricos que condujeron a la demostración de que el ADN es la macromolécula que contiene información genética.
  • Determinar la composición química básica de los ácidos nucleicos.
  • Reconocer las características del modelo de Watson y Crick del ADN.
  • Identificar los principales tipos de ARN en las células.



BASES QUÍMICAS DE LA HERENCIA.





Trabajos que Dilucidaron la Naturaleza del Material Hereditario

Experimentos de Griffith
            El experimento de Griffith, llevado a cabo en 1928 por Frederick Griffith, fue uno de los primeros experimentos que mostró que las bacterias eran capaces de transferir información genética mediante un proceso llamado transformación. En 1928, el microbiólogo Fred Griffith, que investigaba varias cepas de neumococo (Streptococcus pneumoniae), inyectó en ratones la cepa S y la cepa R de la bacteria. La cepa S era dañina, mientras quela rugosa (R), no lo era ya que la cepa S se cubre a sí misma con una cápsula de polisacárido que la protege del sistema inmune del ser que ha sido infectado, resultando en la muerte de este, mientras que la cepa R no contiene esa cápsula protectora es derrotada por el sistema inmunológico. Cuando, inactiva por calor, la cepa S era inyectada, no había secuelas y el ratón vivía. Sorprendentemente, al combinar cepa R (no letal), con cepa S inactivada por calor (no letal), el ratón murió. Además, Griffith encontró células decepa S vivas. En apariencia la cepa R se convirtió en cepa S. Este hallazgo no se pudo explicar, hasta queen 1944 Avery, Mc Leod, y Mc Carty, cultivaron cepa S y:
            1. Produjeron extracto de lisado de células (extracto libre de células).
            2. Luego que los lípidos, proteínas y polisacáridos se removieron, el estreptococo aún conservó su capacidad de replicar su ADN e introducirlo en neumococo R.
            La inactivación por calor de Griffith habría dejado intacto el ADN de los cromosomas de las bacterias, que era el causante de la formación del gen S, y podía ser liberado por las células destruidas e implantarse en cultivos sucesivos de cepa R.

Experimentos de Avery, MacLeod y McCarty
            Avery, Mac Leod y Mc Carty, quienes repitieron los experimentos de transformación de Griffith y caracterizaron químicamente el principio transformante. Avery, Mac Leod, y Mc Carty demostraron que el DNA procedente de una cepa virulenta lisa de neumococo pudo transformar una cepa rugosa en la variedad lisa. Éste es el primer experimento que concluye que el DNA es el material genético.


Experimentos de Chargaff 
            Esta idea fue desechada en 1950 por el científico checo Erwin Chargaff del Instituto Rockefeller, quien analizó en detalle la composición de bases del ADN extraído de diferentes organismos. Llegó a la sorprendente conclusión de que las cuatro bases nitrogenadas no se encontraban en proporciones exactamente iguales en las distintas especies, lo cual sugirió que el ADN no debía ser tan monótono como se pensaba. Chargaff demostró que, independientemente del origen del ADN, la proporción de purinas era igual a la de pirimidinas. Es decir, Adenina (A) aparecía con tanta frecuencia como la Tímida (T) y la Guanina (G), con tanta frecuencia como la Citosina (C). Había dos juegos de equivalencias, A y T por un lado y G y C por otro.
            Este resultado reflejaba por primera vez un aspecto estructural del ADN. Indicaba que, independientemente de la composición de A o de G en un ADN, siempre la concentración de A es igual a la de T y la de C igual ala de G. Sin embargo, en aquel momento Chargaff no sospechó las implicancias que podían tener estasreglas, denominadas más tarde “reglas de Chargaff”, en el esclarecimiento de la estructura del ADN.

Experimentos de Hershey y Chase
            En 1952 Alfred Hershey y Martha Chase realizaron una serie de experimentos para confirmar que es el ADN la base del material genético (y no las proteínas), en lo que se denominó el experimento de Hershey y Chase. Si bien la existencia del ADN había sido conocida por los biólogos desde 1869, en aquella época se había supuesto que eran las proteínas las que portaban la información que determina la herencia. En 1944 mediante el experimento de Avery-MacLeod-McCarty se tuvo por primera vez algún indicio del rol que desempeña el ADN.


Experimentos de Franklin y Wilkins
            En 1953, Rosalind Franklin y Maurice H. Wilkins utilizaron para sus estudios una técnica física conocida como difracción de rayos X. Esta técnica se utiliza para obtener patrones de difracción de cualquier molécula, los cuales son analizados e interpretados matemáticamente, con el fin de proponer una determinada estructura tridimensional de la molécula estudiada. El patrón de difracción de rayos X que obtuvieron Franklin y Wilkins les permitió proponer que la molécula de ADN forma una doble hélice semejante a una escalera de caracol.


El Modelo de Watson y Crick
            En 1953, Watson y Crick propusieron el modelo que establece las bases de la molécula responsable de contener la información genética de todo ser vivo, una estructura tridimensional denominada ácido desoxirribonucleico (ADN). Contribución que celebra este año su cincuenta aniversario y que festeja especialmente la biología molecular. Si bien los científicos ya habían establecido de tiempo atrás que la información genética está contenida en el ADN, desconocían a ciencia cierta su estructura molecular. De esta manera, la doble hélice propuesta por James Watson y Francis Crick, permitió dar respuesta a las interrogantes de la estructura y los mecanismos de la herencia.
            El ADN está formado por unidades químicas (nucleótidos) coloquialmente denominadas A, T, G y C; estos nucleótidos se alinean y se acoplan con otra cadena para formar la doble hélice (A se acopla con T y G con C). La importancia del orden de los nucleótidos es tal, que determina a las proteínas, responsables de la estructura y funcionamiento de cada célula de un ser vivo. Cuando se separan, cada una de las cadenas sirve de molde para la construcción de otra complementaria; así, una molécula de ADN dividida puede generar dos de su mismo tipo.
            Con esta duplicación de cadenas, la información genética se transmite a las siguientes generaciones. Cabe señalar que el modelo de la doble hélice propuesto originalmente fue totalmente teórico. E incluso hubo datos que no pudieron descifrarse directamente de experimentos, y he aquí el enorme mérito de Watson y Crick. Para definir el modelo integraron datos dispersos y consideraron las famosas reglas de Chargaff sobre la composición cuantitativa de nucleótidos en los ácidos nucleicos y construyeron un modelo compatible con los datos de difracción de rayos X obtenidos por Rosalind Franklin. Por ello ambos científicos son ya figuras centrales de la disciplina que hoy llamamos biología molecular; participaron de manera importante en la elucidación del código genético y han publicado diversos artículos y libros científicos, impactando a generaciones de biólogos e investigadores. A partir de la doble hélice comprendimos fenómenos biológicos como la replicación, transcripción, traducción y regulación de la expresión génica.
Bosquejo de Crik del ADN

Características del Modelo de Watson y Crick 
            El modelo para la estructura tridimensional de la molécula de DNA propuesto por Watson y Crick, se basa en la interpretación de imágenes obtenidas a través de difracción de rayos X por Rosalind Franklin quien trabajaba en el laboratorio de Maurice Wilkins (Fig. 1).Para la interpretación de estas imágenes, Watson y Crick contaban con la siguiente información:
  • Los ácidos nucleicos están formados por nucleótidos.
  • Un nucleótido equivale a una base + un azúcar + un fosfato.
  • La relación molar entre Adenina y Timina es igual a 1.0 (A/T = 1.0) y entre Guanina y Citosina es también 1.0 (G/C = 1.0). Esto había sido demostrado por Erwin Chargaff, al analizar mediante cromatografía en capa fina el contenido de bases de las moléculas de DNA de diferentes organismos.


Composición Química de los Ácidos Nucleicos
            Están constituidos por un azúcar que es una pentosa, la cual puede ser: ribosa en el caso del ARN y la desoxirribosa en el caso del ADN. Otro componente de su estructura son las bases nitrogenadas, estas pueden ser:
Púricas:
Adenina y Guanina
Pirimidínicas:
Citosina, timina y uracilo
            La composición la finaliza el ácido fosfórico. Las diferencias químicas entre el ADN y el ARN, la pentosa es distinta, al igual que las bases nitrogenadas, el ARN contiene uracilo y citosina mientras que el ADN contiene timina y citosina.





         El ADN es el Ácido DesoxirriboNucleico. Es el tipo de molécula más compleja que se conoce. Su secuencia de nucleótidos contiene la información necesaria para poder controlar el metabolismo un ser vivo. El ADN es el lugar donde reside la información genética de un ser vivo.
       El estudio de su estructura se puede hacer a varios niveles, apareciendo estructuras, primaria, secundaria, terciaria, cuaternaria y niveles de empaquetamiento superiores.
Estructura primaria
            El ADN está compuesto por una secuencia de nucleótidos formados por desoxirribosa. Las bases nitrogenadas que se hallan formando los nucleótidos de ADN son Adenina, Guanina, Citosina y Timina. No aparece Uracilo. Los nucleótidos se unen entre sí mediante el grupo fosfato del segundo nucleótido, que sirve de puente de unión entre el carbono 5' del primer nucleótido y el carbono 3' de siguiente nucleótido.
            Como el primer nucleótido tiene libre el carbono 5' y el siguiente nucleótido tiene libre el carbono 3', se dice que la secuencia de nucleótidos se ordena desde 5' a 3' (5' → 3').

Estructura secundaria
        La estructura secundaria del ADN fue propuesta por James Watson y Francis Crick, y la llamaron el modelo de doble hélice de ADN. Este modelo está formado por dos hebras de nucleótidos. Estas dos hebras se sitúan de forma antiparalela, es decir, una orientada en sentido 5' → 3' y la otra de 3' → 5'. Las dos están paralelas, formando puentes de Hidrógeno entre las bases nitrogenadas enfrentadas. Cuando en una hebra encontramos Adenina, en la otra hebra hallamos Timina. Cuando en una hebra encontramos Guanina, en la otra hallamos Citosina. Estas bases enfrentadas son las que constituyen los puentes de Hidrógeno. Adenina forma dos puentes de Hidrógeno con Timina. Guanina forma tres puentes de Hidrógeno con la Citosina. Las dos hebras están enrolladas en torno a un eje imaginario, que gira en contra del sentido de las agujas de un reloj. Las vueltas de estas hélices se estabilizan mediante puentes de Hidrógeno. Esta estructura permite que las hebras que se formen por duplicación de ADN sean copia complementaria de cada una de las hebras existentes.
Estructura terciaria
      El ADN es una molécula muy larga en algunas especies y, sin embargo, en las células eucariotas se encuentra alojado dentro del minúsculo núcleo. Cuando el ADN se une a proteínas básicas, la estructura se compacta mucho. Las proteínas básicas son Histonas o Protaminas. La unión con Histonas genera la estructura denominada nucleosoma. Cada nucleosoma está compuesto por una estructura voluminosa, denominada core, seguida por un eslabón o "Linker". El core está compuesto por un octámero de proteínas, Histonas, denominadas H2A, H2B, H3 y H4. Cada tipo de histona se presenta en número par. Esta estructura está rodeada por un tramo de ADN que da una vuelta y 3/4 en torno al octámero. El Linker está formado por un tramo de ADN que une un nucleosoma con otro y una histona H1. El conjunto de la estructura se denomina fibra de cromatina de 100Å. Tiene un aspecto repetitivo en forma de collar de perlas, donde las perlas serían los nucleosomas, unidos por los linker. El ADN debe encontrarse más compacto en el núcleo de los espermatozoides. En este caso, el ADN se une a proteínas de carácter más básico, denominadas Protaminas. El ADN se enrolla sobre estas proteínas, formando una estructura muy compacta, denominada estructura cristalina del ADN.
Estructura cuaternaria
      La cromatina en el núcleo tiene un grosor de 300Å. La fibra de cromatina de 100Å se empaqueta formando una fibra de cromatina de 300Å. El enrollamiento que sufre el conjunto de nucleosomas recibe el nombre de solenoide. Los solenoides se enrollan formando la cromatina del núcleo interfásico de la célula eucariota. Cuando la célula entra en división, el ADN se compacta más, formando los cromosomas.






            El Ácido RiboNucleico está constituido por la unión de nucleótidos formados por una pentosa, la Ribosa, unas bases nitrogenadas, que son Adenina, Guanina, Citosina y Uracilo. No aparece la Timina. Los nucleótidos se unen formando una cadena con una ordenación en la que el primer nucleótido tiene libre el carbono 5’ de la pentosa. El último nucleótido tiene libre el carbono 3’. Por ello, se dice que la ordenación de la secuencia de nucleótidos va desde 5’ a 3’ (5’ ® 3’). En la célula aparecen cuatro tipos de ARN, con distintas funciones, que son el ARN mensajero, el ARN ribosómico, el ARN transferente  y el ARN heteronuclear.
ARN mensajero (ARNm)
            ARN lineal, que contiene la información, copiada del ADN, para sintetizar una proteína. Se forma en el núcleo celular, a partir de una secuencia de ADN. Sale del núcleo y se asocia a ribosomas, donde se construye la proteína. A cada tres nucleótidos (codon) corresponde un aminoácido distinto. Así, la secuencia de aminoácidos de la proteína está configurada a partir de la secuencia de los nucleótidos del ARNm.
ARN ribosómico (ARNr)
            El ARN ribosómico, o ribosomal, unido a proteínas de carácter básico, forma los ribosomas. Los ribosomas son las estructuras celulares donde se ensamblan aminoácidos para formar proteínas, a partir de la información que transmite el ARN mensajero. Hay dos tipos de ribosomas, el que se encuentra en células procariotas y en el interior de mitocondrias y cloroplastos, y el que se encuentra en el hialoplasma o en el retículo endoplásmico de células eucariotas.
ARN transferente (ARNt)
            El ARN transferente o soluble es un ARN no lineal. En él se pueden observar tramos de doble hélice intracatenaria, es decir, entre las bases que son complementarias, dentro de la misma cadena. Esta estructura se estabiliza mediante puentes de Hidrógeno.
            Además de los nucleótidos de Adenina, Guanina, Citosina y Uracilo, el ARN transferente presenta otros nucleótidos con bases modificadas. Estos nucleótidos no pueden emparejarse, y su existencia genera puntos de apertura en la hélice, produciendo bucles.
            En el ARNt se distinguen tres tramos (brazos). En uno de ellos (1 en la figura), aparece una secuencia de tres nucleótidos, denominada anticodon. Esta secuencia es complementaria con una secuencia del ARNm, el codon. En el brazo opuesto (2 en la figura), en el extremo 3' de la cadena, se une un aminoácido específico predeterminado por la secuencia de anticodon.
            La función del ARNt consiste en llevar un aminoácido específico al ribosoma. En él se une a la secuencia complementaria del ARNm, mediante el anticodon. A la vez, transfiere el aminoácido correspondiente a la secuencia de aminoácidos que está formándose en el ribosoma.





En el siguiente dibujo, se describe trascripción del ADN al ARN y a la proteína, este proceso es el fundamento de la biología molecular y es representado por cuatro etapas importantes.    1) El ADN replica su información en un proceso que implica muchas enzimas. 2) Síntesis del ARN mensajero (ARN m). 3) En las células eucariotas el ARN m es procesado y migra del núcleo al citoplasma. 4) El ARN mensajero lleva la información del código a los ribosomas, Los ribosomas son orgánulos sin membrana, sólo visibles al microscopio electrónico debido a su reducido tamaño ,29 nm en células procariotas y 32 nm en las eucariotas. Su función es ensamblar proteínas a partir de la información genética que le llega del ADN transcrita en forma de ARN mensajero (ARNm).